
Preuves Interactives  
et Applications

 
Induction, Cases and  
Structured Proofs

Université Paris-Saclay

Burkhart Wolff

http://www.lri.fr/~wolff/teach-material/2020-2021/M2-CSMR

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Outline

• Inductive Sets and  
 lfp-Fixed Points revisited

• Induction and Case-Distinctions 
 considered logically

• Induction and Cases in Isabelle

• Introduction to  
 Structured Proofs in Isar

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Specification Mechanism Commands
● Datatype Definitions (similar SML): 

Examples: 
 
 
 datatype mynat = ZERO | SUC mynat

 datatype 'a list = MT | CONS "'a" "'a list"

21/1/21 B. Wolff - M1-PIA Semantics and Constructions

  
Induction and 

lfp-Fixed-Points

Revisited

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● Inductively Defined Sets: 

 
 

 
 

 example:	 inductive_set Even :: "int set"  
 where null: "0 ∈ Even" 	  
 	 | plus:"x ∈ Even ⟹ x+2 ∈ Even"	 

 | min :"x ∈ Even ⟹ x-2 ∈ Even"

inductive <c> :: “ τ ⇒ bool” for A::τ  

where <thmname> : “<ϕ>”  
 	 	 | ...

 	 	 | <thmname> = <ϕ>

inductive_set <c> :: “ τ set” [for A::τ]  
 where <thmname> : “<ϕ>”  

 	 	 | ...

 	 	 | <thmname> = <ϕ>

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● These are not built-in constructs in Isabelle, rather they are  
based on a series of definitions and typedefs.

● The machinery behind is based on a fixed-point combinator on sets: 

 

 lfp :: “('α set ⇒ 'α set) ⇒ 'α set”

which can be conservatively defined by: 

 lfp f = ⋂ {u. f u ⊆ u}

and which enjoys a constrained fixed-point property: 

 mono f ⟹ lfp f = f (lfp f)

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● Example : Even (see before)

– the set Even is conservatively defined by: 
 
 Even = lfp (λ X::int set. {0} ∪ (λ x. x + 2) ` X 
	 	 	 	 ∪ (λ x. x - 2) ` X)

where _ `_ :: ('a ⇒ 'b) ⇒ 'a set ⇒ ‘b set is a “map” on sets

– from which the properties:

null: "0 ∈ Even" 	

plus: "x ∈ Even ⟹ x+2 ∈ Even”

min :"x ∈ Even ⟹ x-2 ∈ Even”

can be derived automatically

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● Example : Even (see before)

– More important: it derives an  

	 induction scheme

 for the Even set.

– That is: if we know that

• some x is in Even

• and some property P over some arbitrary a 

is maintained (invariant) for a+2 and a-2

• P x holds.

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● Example : Even (see before)

– In textbooks on Natural Deduction (like van  
Dalens Book) we might find this formalized in: 
 
 
 
 
 

– Note that a is free and does only occur in  
these sub-proof-trees 	

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● Example : Even (see before)

– Isabelle derives this as theorem from the lfp definition and
displays it in Pure follows: 
 

 x ∈ Even

 ⟹ P 0

 ⟹⋀x. x ∈ Even ⟹ P x ⟹ P (x + 2)

 ⟹⋀x. x ∈ Even ⟹ P x ⟹ P (x - 2)

 ⟹ P x 

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set

● Example : Even (see before)

– or equivalently: 

 assumes “x ∈ Even” 

 and base: “P 0” 

 and step1: “⋀x. ⟦x ∈ Even; P x⟧ ⟹ P (x + 2)“ 

 and step2: “⋀x. ⟦x ∈ Even; P x⟧ ⟹ P (x - 2)“ 

shows “P x” 

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● Example 2: WellTypedness

– datatype "τ" = TVτ string | Typeτ string "τ list"

– type_synonym ctxt = "(string × τ) list"

– definition fun_typ :: "τ ⇒ τ ⇒ τ" (infixr "⇒τ" 70) 

 where "fun_typ τ τ' ≡ Typeτ (''fun'') [τ, τ']" 

– datatype "term" = Var string | Const string  
 | Abs string "term"  
 | App "term" "term" (infix "°" 80)

where the pragma (infixr "⇒τ" 70) instructs Isabelle’s parser 

and pretty-printer to accept " t ⇒τ t’ " as alternative notation for  
" fun_typ t t’ “.

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● Example 2: WellTypedness (inductively defined) 
 
 
 
 
 

which reduces syntactically with a pragma for mixfix notation  
(see chapter 8.2 in the Isar Reference Manual) 
 
 ("((_),(_) ⊢/ (_) :: (_))" [60,0,60] 60) 
 
to

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set

● Example 2: WellTypedness (inductively defined) 
 
 
 
 

which gives the types inference rules not only a precise meaning, 
but also derived proof principles like

21/1/21 B. Wolff - M1-PIA Semantics and Constructions

  
A First Glimpse on  

Case-Distinction and  
Induction Rules

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● Example 2: WellTypedness (derived consequences) 
 
is_WELLFORMED.induct:

 x1, x2 ⊢ x3 :: x4 ⟹

 (⋀s τ Σ Γ instantiate f. (s, τ) ∈ set Σ ⟹ P Σ Γ (Const s) (instantiate f τ)) ⟹

 (⋀s τ Γ Σ. (s, τ) ∈ set Γ ⟹ P Σ Γ (Var s) τ) ⟹

 (⋀Σ Γ f τ τ' a. Σ,Γ ⊢ f :: τ ⇒τ τ' ⟹

 P Σ Γ f (τ ⇒τ τ') ⟹ Σ,Γ ⊢ a :: τ ⟹ P Σ Γ a τ ⟹ P Σ Γ (f ° a) τ') ⟹

 (⋀Σ x τ Γ body τ'.

 Σ,(x, τ) # filter (λp. fst p ≠ x) Γ ⊢ body :: τ' ⟹

 P Σ ((x, τ) # filter (λp. fst p ≠ x) Γ) body τ' ⟹ P Σ Γ (Abs x body) (τ ⇒τ τ')) ⟹

 P x1 x2 x3 x4

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● Example 2: WellTypedness (derived consequences) 
 
is_WELLFORMED.cases:

 a1, a2 ⊢ a3 :: a4 ⟹

 (⋀s τ Σ Γ instantiate f.

 a1 = Σ ⟹ a2 = Γ ⟹ a3 = Const s ⟹ a4 = instantiate f τ ⟹ (s, τ) ∈ set Σ ⟹ P) ⟹

 (⋀s τ Γ Σ.

 a1 = Σ ⟹ a2 = Γ ⟹ a3 = Var s ⟹ a4 = τ ⟹ (s, τ) ∈ set Γ ⟹ P) ⟹

 (⋀Σ Γ f τ τ' a.

 a1=Σ ⟹ a2=Γ ⟹ a3=f ° a ⟹ a4=τ' ⟹ Σ,Γ ⊢ f :: τ ⇒τ τ' ⟹ Σ,Γ ⊢ a :: τ ⟹ P) ⟹

 (⋀Σ x τ Γ body τ'.

 a1=Σ ⟹ a2=Γ ⟹ a3 = Abs x body ⟹ a4=τ ⇒τ τ' ⟹ Σ,(x,τ)#filter(λp. fst p ≠ x) Γ ⊢ body :: τ' ⟹ P)  

 ⟹ P

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● Remarks

– Induction schemes (closely related to fixpoints, recursion,
and while-loops) are the major weapon in HOL proofs that
can NOT be done by automated provers

– they can refer to (inductive) datatypes,  
sets and therefore relations and are always the 
 means of choice if we want to express that something is 
 „closed under a set of rules“

– Usually there are several choices of induction schemes, 
their instantiation, and the target they are applied on.

– Like invariants of while-loops, it may be that some 
generalization of a property can be proven inductively, 
the concrete property, however, not directly.

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set

● Remarks

– Obviously, induction rules and/or  

case-distinction rules over non-trivial 
inductive schemes are difficult to read

– … and to get implemented correctly

– … it gives therefore confidence  

to have them derived in Isabelle …

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● Parametric Inductively Defined Sets  

(like transitive closure on paths): 

 
 

 
example: inductive path for rel ::"'a ⇒ 'a ⇒ bool" 

 where base : “path rel x x” 

 	 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”] 
where <thmname> : “<ϕ>”  

 	 	 | ...

 	 	 | <thmname> = <ϕ>

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set
● Inductively Defined Sets: Example path. 

Isabelle/HOL:

 path rel x y

 ⟹⋀x. P x x;

 ⟹⋀x y z. rel x y ⟹ path rel y z ⟹ P y z ⟹ P x

 ⟹ P x y 

● Text-book: 
 
 

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Set

● Note: an equivalent (appending) induction  
scheme with the same power:

 path rel x y

 ⟹(⋀x. P x x)

 ⟹(⋀x y z. ⟦ path rel x y; P x y; rel y z⟧ ⟹ P x

 ⟹ P x y

● The choice of the induction scheme matters 
for the task ahead ...

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Data-Types and Recursive Funs
● Recall: Datatype Definitions (similar SML): 

(Machinery behind : complex series of const and typedefs !) 
 
 
 

● Recall: Recursive Function Definitions: 
 
 
 

datatype ('a1..'an) T =

 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where

 “<c> <pattern> = <t>” 

| ...

 | “<c> <pattern> = <t>”

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

 Command Inductive Datatype
● Example: Induction Scheme from Datatype Definitions

– (⋀a. P (leaf a)) 
 ⟹ (⋀a t t’. P t ⟹ P t’ ⟹ P (node a t t’)) 
 ⟹ P tree

– Textbook: 
 
 
  
 
 

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

● Example: Recursive Function Definition

fun reflect :: "'a tree ⇒ 'a tree"

 where a : "reflect (leaf x) = leaf x"

 | b : "reflect (node x t t') = node x t' t” 

• Example Proof: lemma “reflect(reflect t) = t”:

– Proof by induction (apply style; since tree.induct is just  

an ordinary (introduction) rule, this works by rule)  
 
apply(rule_tac tree=t in tree.induct)  
 apply(simp add: a) 
apply(simp add: b)  
done

 Command Inductive Datatype

21/1/21 B. Wolff - M1-PIA Semantics and Constructions

  
Induction and 

Cases considered  
logically

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Induction vs. Case-Split
● The commands inductive, inductive_set and 

datatype generate another important schema  
of rules which is an important weapon: 
 
 Case-Splits 

● Most basic form:  
disjE  

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Induction vs. Case-Split
● For the datatype tree, this rule present 

itself like this:

 (⋀a. y = leaf a ⟹ Q)

 ⟹ (⋀x t t’. y = node x t t’ ⟹ Q)

 ⟹ Q 

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Induction vs. Case-Split
● For the inductive sets, the case split rule path.cases

presents itself like this: 

 path rel a1 a2

⟹ ⋀x. a1 = x ⟹ a2 = x ⟹ P

⟹ ⋀x y z. a1 = x ⟹ a2 = z ⟹  

 rel x y ⟹ path rel y z ⟹ P

⟹ P 

21/1/21 B. Wolff - M1-PIA Semantics and Constructions

  
Induction and 

Cases in Isabelle

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Induction and Case-Splitting Support

• induction and case-splitting were supported by 
 specific methods attempting to figure out auto-  
 matically which rule to use

• There are apply-style proof methods:  

which work with arbitrary open parameters  
of a subgoal ...

apply(induct_tac „<term>“)

apply(case_tac „<term>“)

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Induction and Case-Splitting Support

• induction and case-splitting were supported by 
 specific methods attempting to figure out auto-  
 matically which rule to use

• There are proof methods giving support 
 for an own structured proof-language Isar  

which act on parameters which are “fixed” (see later).

apply(induct „<term>“ <options ... >)

 apply(cases „<term>“)

21/1/21 B. Wolff - M1-PIA Semantics and Constructions

  
Structured Proofs 
in Isabelle/Isar

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Introduction to Isar 
Structured Proofs

● A language for structured proofs:

 Isar - Intelligible semi-automated reasoning 

● http://isabelle.in.tum.de/Isar/

● supporting a declarative proof-style 
 (rather than a procedural one)

● oriented towards “natural deduction style”

● presenting intermediate steps in a  
 machine-checked, human readable format

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Introduction to Isar 
Structured Proofs

● Core: the proof environment: 
 
 
 
 
 

● ... a switch from procedural to declarative 
 style can be done by rephrasing the goals

proof (<method>) 
[case - fix - assumes - defs- have-] 
show “<goal>” <proof>

next

 ...

next

 [case - fix - assumes - defs- have-] 

show “<goal>” <proof>

qed

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Introduction to Isar 
Structured Proofs

● Instead of the goal format: 
 

the “Isar”-format:  
 
 

is preferable because …

⋀a1 ... an. A1 ⟹ ... Am ⟹ P

 fix a1::<typ> ... fix an::<typ> 
 assume A1 and ... and Am  

 show P

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Introduction to Isar 
Structured Proofs

● is preferable

● labelling of assumptions

● control of goal parameters

● intermediate steps “have”

● support for equational reasoning

● abbreviations

● pattern-matching

● support for cases and inductions, 
which become proof-structuring  
concepts

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Introduction to Isar 
Structured Proofs

● The methods induct and cases produce 
 a list of local contexts (shown by the 
 diagnostic command print_cases) 
 with the appropriate fix’es and assume’s

● Example:

 lemma "reflect(reflect t) = t” 
 proof(induct t) print_cases

 case (leaf x) then show ?case sorry 
 next

 	 case (node x1a t1 t2) then show ?case sorry

 qed

A Structured „Classical“ Proof
● Example: (Nested) Proof by Contradiction 

Nameless
selection from  
local context

A Structured „Classical“ Proof
● Example: A Calculational Proof 

A Structured „Classical“ Proof
● Example: Induction, Calculation, Patterns … 

towards a comprehensive human- readable 
proof presentation format 
 introducing  

abbreviations by

pattern-matching

proof-structuring  
method

local  
abbreviationintermediate  

goalcatching
induction hyp intermediate  
lemmapresenting  

main goal in  
terms of
abbrevs 

A Structured „Classical“ Proof
● MORE EXAMPLES ON “Proof Patterns”: 

 
Tobias Nipkow: 
“Programming and Proving in Isabelle/HOL” 
  
 (online documentation)

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Conclusion
● Induction is at the heart of interactive 

proving; this requires the most human ingenuity

● Isabelle offers support for inductive  

and case-distinction based proofs

● the Isar-language paves the way for  

adequate presentation of common proof- 
structures (by induction, by case distinction,...)

● ... and by the way, Isar paved the way for 
better portability and parallel proof-checking

