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Outline
 

• Inductive Sets and  
  lfp-Fixed Points revisited

• Induction and Case-Distinctions 
  considered logically

• Induction and Cases in Isabelle

• Introduction to  
  Structured Proofs in Isar
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Specification Mechanism Commands
● Datatype Definitions (similar SML): 

Examples: 
 
 
      datatype  mynat = ZERO | SUC mynat


              datatype 'a list = MT | CONS "'a" "'a list"
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Induction and 

lfp-Fixed-Points 

Revisited 



21/1/21 B. Wolff  -  M1-PIA Inductions and Structured Proofs 

 Command Inductive Set
● Inductively Defined Sets: 

 
 
        


 
 

     example:	   inductive_set     Even :: "int set"  
                              where       null: "0 ∈ Even" 	  
                          	           | plus:"x ∈ Even ⟹ x+2 ∈ Even"	 

                                          | min :"x ∈ Even ⟹ x-2 ∈ Even"            

inductive     <c> :: “  τ ⇒ bool” for A::τ   

where  <thmname> : “<ϕ>”  
 	  	  | ...


   	  	    | <thmname> = <ϕ>            

inductive_set     <c> :: “ τ set”  [for A::τ]  
             where  <thmname> : “<ϕ>”  

 	           	  | ...

   	  	           | <thmname> = <ϕ>            
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 Command Inductive Set
● These are not built-in constructs in Isabelle, rather they are  
based on a series of definitions and typedefs.


● The machinery behind is based on a fixed-point combinator on sets: 

 

   lfp :: “('α set ⇒ 'α set) ⇒ 'α set”


which can be conservatively defined by: 

                 lfp f = ⋂ {u. f u ⊆ u}


and which enjoys a constrained fixed-point property: 

                 mono f ⟹ lfp f = f (lfp f)
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 Command Inductive Set
● Example : Even (see before)


– the set Even is conservatively defined by: 
 
 Even = lfp (λ X::int set.     {0} ∪  (λ x. x + 2) ` X 
	 	 	 	                   ∪  (λ x. x - 2) ` X)

where _ `_ :: ('a ⇒ 'b) ⇒ 'a set ⇒ ‘b set is a “map” on sets


– from which the properties:

null:  "0 ∈ Even" 	 


plus: "x ∈ Even ⟹ x+2 ∈ Even”


min :"x ∈ Even ⟹ x-2 ∈ Even”


can be derived automatically
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 Command Inductive Set
● Example : Even (see before)


– More important: it derives an  

	 induction scheme 


    for the Even set.

– That is: if we know that 


• some x is in Even

• and some property P over some arbitrary a 

is maintained (invariant) for a+2 and a-2 

• P x holds.
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 Command Inductive Set
● Example : Even (see before)


– In textbooks on Natural Deduction (like van  
Dalens Book) we might find this formalized in: 
 
 
 
 
 

– Note that a is free and does only occur in  
these sub-proof-trees 	
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 Command Inductive Set
● Example : Even (see before)


– Isabelle derives this as theorem from the lfp definition and  
displays it in Pure follows: 
 

     x ∈ Even


       ⟹ P 0


       ⟹⋀x. x ∈ Even ⟹ P x ⟹ P (x + 2)


     ⟹⋀x. x ∈ Even ⟹ P x ⟹ P (x - 2)


     ⟹ P x 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 Command Inductive Set

● Example : Even (see before)

– or equivalently: 

 

  assumes “x ∈ Even” 

  and base: “P 0” 

  and step1:  “⋀x. ⟦x ∈ Even; P x⟧ ⟹ P (x + 2)“ 

  and step2: “⋀x. ⟦x ∈ Even; P x⟧ ⟹ P (x - 2)“ 

shows “P x” 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 Command Inductive Set
● Example 2: WellTypedness


– datatype "τ" = TVτ string | Typeτ string "τ list"

– type_synonym ctxt = "(string × τ) list"

– definition fun_typ ::  "τ ⇒ τ ⇒ τ"  (infixr "⇒τ" 70) 

    where "fun_typ τ τ' ≡ Typeτ (''fun'') [τ, τ']" 

– datatype "term" = Var string | Const string  
                           | Abs string "term"  
                           | App "term" "term" (infix "°" 80)


where the pragma  (infixr "⇒τ" 70) instructs Isabelle’s parser 

and pretty-printer to accept " t ⇒τ  t’ " as alternative notation for  
" fun_typ t t’ “.
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 Command Inductive Set
● Example 2: WellTypedness (inductively defined) 
 
 
 
 
 

which reduces syntactically with a pragma for mixfix notation  
(see chapter 8.2 in the Isar Reference Manual) 
 
                ("((_),(_) ⊢/ (_) :: (_))" [60,0,60] 60) 
 
to
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 Command Inductive Set

● Example 2: WellTypedness (inductively defined) 
 
 
 
 

which gives the types inference rules not only a precise meaning, 
but also derived proof principles like 
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A First Glimpse on  

Case-Distinction and  
Induction Rules
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 Command Inductive Set
● Example 2: WellTypedness (derived consequences) 
 
is_WELLFORMED.induct:

    x1, x2 ⊢ x3 :: x4 ⟹

    (⋀s τ Σ Γ instantiate f. (s, τ) ∈ set Σ ⟹ P Σ Γ (Const s) (instantiate f τ)) ⟹

    (⋀s τ Γ Σ. (s, τ) ∈ set Γ ⟹ P Σ Γ (Var s) τ) ⟹

    (⋀Σ Γ f τ τ' a.  Σ,Γ ⊢ f :: τ ⇒τ τ' ⟹

                             P Σ Γ f (τ ⇒τ τ') ⟹ Σ,Γ ⊢ a :: τ ⟹ P Σ Γ a τ ⟹ P Σ Γ (f ° a) τ') ⟹

    (⋀Σ x τ Γ body τ'.


        Σ,(x, τ) # filter (λp. fst p ≠ x) Γ ⊢ body :: τ' ⟹

        P Σ ((x, τ) # filter (λp. fst p ≠ x) Γ) body τ' ⟹ P Σ Γ (Abs x body) (τ ⇒τ τ')) ⟹

    P x1 x2 x3 x4 
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 Command Inductive Set
● Example 2: WellTypedness (derived consequences) 
 
is_WELLFORMED.cases:

    a1, a2 ⊢ a3 :: a4 ⟹

    (⋀s τ Σ Γ instantiate f.

        a1 = Σ ⟹ a2 = Γ ⟹ a3 = Const s ⟹ a4 = instantiate f τ ⟹ (s, τ) ∈ set Σ ⟹ P) ⟹

    (⋀s τ Γ Σ.

        a1 = Σ ⟹ a2 = Γ ⟹ a3 = Var s ⟹ a4 = τ ⟹ (s, τ) ∈ set Γ ⟹ P) ⟹

    (⋀Σ Γ f τ τ' a.

        a1=Σ ⟹ a2=Γ ⟹ a3=f ° a ⟹ a4=τ' ⟹ Σ,Γ ⊢ f :: τ ⇒τ τ' ⟹ Σ,Γ ⊢ a :: τ ⟹ P) ⟹

   (⋀Σ x τ Γ body τ'.

        a1=Σ ⟹ a2=Γ ⟹ a3 = Abs x body ⟹ a4=τ ⇒τ τ' ⟹ Σ,(x,τ)#filter(λp. fst p ≠ x) Γ ⊢ body :: τ' ⟹ P)  

 ⟹   P 
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 Command Inductive Set
● Remarks


– Induction schemes (closely related to fixpoints, recursion, 
and while-loops) are the major  weapon in HOL proofs that 
can NOT be done by automated provers


– they can refer to (inductive) datatypes,  
sets and therefore relations and are always the 
 means of choice if we want to express that something is 
  „closed under a set of rules“


– Usually there are several choices of induction schemes, 
their instantiation, and the target they are applied on.


– Like invariants of while-loops, it may be that some 
generalization of a property can be proven inductively, 
the concrete property, however, not directly. 
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 Command Inductive Set

● Remarks

– Obviously, induction rules and/or  

case-distinction rules over non-trivial 
inductive schemes are difficult to read


– … and to get implemented correctly

– … it gives therefore confidence  

to have them derived in Isabelle …
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 Command Inductive Set
● Parametric Inductively Defined Sets  

(like transitive closure on paths): 

 
 
          


 
example: inductive path for rel ::"'a ⇒ 'a ⇒ bool" 

              where  base : “path rel x x” 

     	            |    step : “rel x y ⟹ path rel y z ⟹ path rel x z”             

inductive     <c> [ for <v>:: “<τ>” ] 
where  <thmname> : “<ϕ>”  

 	  	  | ...

   	  	    | <thmname> = <ϕ>            
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 Command Inductive Set
● Inductively Defined Sets: Example path. 

Isabelle/HOL:


       path rel x y 


      ⟹⋀x. P x x;


      ⟹⋀x y z.  rel x y ⟹ path rel y z ⟹ P y z ⟹ P x 


      ⟹ P x y 

● Text-book: 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 Command Inductive Set

● Note: an equivalent (appending) induction  
scheme with the same power:


       path rel x y

     ⟹(⋀x. P x x)


     ⟹(⋀x y z. ⟦ path rel x y; P x y; rel y z⟧ ⟹ P x 


     ⟹ P x y


● The choice of the induction scheme matters 
for the task ahead ...
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Data-Types and Recursive Funs
● Recall: Datatype Definitions (similar SML): 

(Machinery behind : complex series of const and typedefs !) 
 
 
 
          


● Recall: Recursive Function Definitions: 
 
 
 
              

datatype ('a1..'an) T = 

 <c> :: “<τ>”  | … |  <c> :: “<τ>”   

fun <c> ::“<τ>” where

     “<c> <pattern> = <t>” 

| ...

  |   “<c> <pattern> = <t>”               
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 Command Inductive Datatype
● Example: Induction Scheme from Datatype Definitions


–         (⋀a. P (leaf a)) 
    ⟹ (⋀a t t’. P t ⟹ P t’ ⟹ P (node a t t’)) 
    ⟹ P tree


– Textbook: 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● Example: Recursive Function Definition

fun reflect :: "'a tree ⇒ 'a tree" 


     where  a : "reflect (leaf x) = leaf x"

               | b : "reflect (node x t t') = node x t' t” 

• Example Proof:   lemma “reflect(reflect t) = t”:

– Proof by induction  (apply style; since tree.induct is just  

an ordinary (introduction) rule, this works by rule)  
 
apply(rule_tac tree=t in tree.induct)  
 apply(simp add: a) 
apply(simp add: b)         
done       

 Command Inductive Datatype
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Induction and 

Cases considered  
logically 
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Induction vs. Case-Split
● The commands inductive, inductive_set and 

datatype generate another important schema  
of rules which is an important weapon: 
 
  Case-Splits 

● Most basic form:  
disjE  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Induction vs. Case-Split
● For the datatype tree, this rule present 

itself like this:


       (⋀a. y = leaf a ⟹ Q)


   ⟹ (⋀x t t’. y = node x t t’ ⟹ Q) 


   ⟹ Q 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Induction vs. Case-Split
● For the inductive sets, the case split rule path.cases 

presents itself like this: 

             path rel a1 a2


⟹   ⋀x.       a1 = x ⟹ a2 = x ⟹ P


⟹   ⋀x y z.  a1 = x ⟹ a2 = z ⟹  

                   rel x y ⟹ path rel y z ⟹ P


⟹  P 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Induction and 

Cases in Isabelle 
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Induction and Case-Splitting Support

• induction and case-splitting were  supported by 
  specific methods attempting to figure out auto-  
  matically which  rule to use

• There are apply-style proof methods:  
  


which work with arbitrary open parameters  
of a subgoal ... 

apply(induct_tac „<term>“)

apply(case_tac „<term>“)
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Induction and Case-Splitting Support

• induction and case-splitting were  supported by 
  specific methods attempting to figure out auto-  
  matically which rule to use

• There are proof methods giving support 
  for an own structured proof-language Isar  
  


which act on parameters which are “fixed” (see later). 

apply(induct „<term>“ <options ... >)

      apply(cases „<term>“)                       
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Structured Proofs 
in Isabelle/Isar 
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Introduction to Isar 
Structured Proofs

 

●  A language for structured proofs:


      Isar - Intelligible semi-automated reasoning 

●  http://isabelle.in.tum.de/Isar/

●  supporting a declarative proof-style 
 (rather than a procedural one)


●  oriented towards “natural deduction style”

●  presenting intermediate steps in a  
 machine-checked, human readable format
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Introduction to Isar 
Structured Proofs

 

●  Core: the proof environment: 
 
 
 
 
 

●  ... a switch from procedural to declarative 
 style can be done by rephrasing the goals


proof (<method>) 
[case - fix - assumes - defs- have-] 
show “<goal>” <proof>


next

   ...

next

   [case - fix - assumes - defs- have-] 

show “<goal>” <proof>

qed
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Introduction to Isar 
Structured Proofs 


●  Instead of the goal format: 
 

the “Isar”-format:  
 
 

is preferable because … 


⋀a1 ... an. A1 ⟹ ... Am ⟹ P


  

              fix a1::<typ> ... fix an::<typ> 
                     assume A1 and  ... and Am  

           show P  
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Introduction to Isar 
Structured Proofs

 

● is preferable 


● labelling of assumptions 

● control of goal parameters

● intermediate steps “have”

● support for equational reasoning

● abbreviations

● pattern-matching 

● support for cases and inductions, 
which become proof-structuring  
concepts
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Introduction to Isar 
Structured Proofs

●  The methods induct and cases produce 
 a list of local contexts (shown by the 
 diagnostic command print_cases) 
 with the appropriate fix’es and assume’s


●  Example:

 lemma "reflect(reflect t) = t” 
      proof(induct t) print_cases

        case (leaf x) then show ?case sorry 
      next


  	     case (node x1a t1 t2) then show ?case sorry

        qed 



A Structured „Classical“ Proof
● Example: (Nested) Proof by Contradiction 

 

Nameless 
selection from  
local context



A Structured „Classical“ Proof
● Example: A Calculational Proof 

 



A Structured „Classical“ Proof
● Example: Induction, Calculation, Patterns … 

towards a comprehensive human- readable 
proof presentation format 
 introducing  

abbreviations by 

pattern-matching

proof-structuring  
method 

local  
abbreviationintermediate  

goalcatching 
induction hyp intermediate  
lemmapresenting  

main goal in  
terms of 
abbrevs 



A Structured „Classical“ Proof
● MORE EXAMPLES ON “Proof Patterns”: 

 
Tobias Nipkow: 
“Programming and Proving in Isabelle/HOL” 
  
 (online documentation)



21/1/21 B. Wolff  -  M1-PIA Inductions and Structured Proofs 

Conclusion
● Induction is at the heart of interactive 

proving; this requires the most human ingenuity

● Isabelle offers support for inductive  

and case-distinction based proofs

● the Isar-language paves the way for  

adequate presentation of common proof- 
structures (by induction, by case distinction,...)


● ... and by the way, Isar paved the way for 
better portability and parallel proof-checking


