Preuves Interactives
et Applications

Burkhart Wolff

http://www.lri.fr/ ~wol ff/teach-material /2020-2021/M2-CSMR

Universite Paris-Saclay

Induction, Cases and
Structured Proofs

Outline

* Inductive Sets and
|fp-Fixed Points revisited
* Induction and Case-Distinctions
considered logically
e Induction and Cases in Isabelle
* Introduction to
Structured Proofs in Isar

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Specification Mechanism Commands

- Datatype Definitions (similar SML):
Examples:

datatype mynat = ZERO | SUC mynat
datatype 'a list = MT | CONS "'a" "'a list"

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Induction and
|fp-Fixed-Points

Revisited

21/1/21 B. Wolff - M1-PIA Semantics and Constructions

Command Inductive Set

- Inductively Defined Sets:

inductive_set <c> :: "t set” [for A::T]
where <thmname> : “"<¢>"

| <thmname> = <¢>

\

inductive <c> ::V 1= bool” for A::t

where <thmname> : “<¢>"

| <thmname> = <¢>

example: inductive_set Even :: "int set"
where null: "O € Even"

| plus:"x € Even = x+2 € Even"
| min :"x € Even = x-2 € Even"

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

- These are not built-in constructs in Isabelle, rather they are
based on a series of definitions and typedefs.

- The machinery behind is based on a fixed-point combinator on sets:

Ifp :: “('a set = 'a set) = 'a set”

which can be conservatively defined by:

ifpf=11{u.fucu

and which enjoys a constrained fixed-point property:

monof = lfpf=1(lfpf)

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

- Example : Even (see before)
— the set Even is conservatively defined by:
Even =Ifp (A Xiintset. {0}u (Ax.x+2) X
u (AXx.x-2) X)
where " ::('a="'b) = 'aset = ‘b setis a "map” on sets
— from which the properties:

null: "0 € Even"

plus: "X € Even = x+2 € Even”

min :"X € Even = x-2 € Even”

can be derived automatically

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

- Example : Even (see before)

— More important: it derives an

Induction scheme

for the Even set.
— That is: if we know that

e some X is in Even

* and some property P over some arbitrary a
is maintained (invariant) for a+2 and a-2

* P x holds.

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

- Example : Even (see before)

— In textbooks on Natural Deduction (like van
Dalens Book) we might find this formalized in:

a € Eve.n; P(a)|] ~ |ae Eve.n; P(a)]

r € Even P(0) P(a.—l— 2) P(a.— 2)
P(z)

— Note that a is free and does only occur in
these sub-proof-trees

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

- Example : Even (see before)

— Isabelle derives this as theorem from the Ifp definition and
displays it in Pure follows:

X € Even

— PO

=>/\x.erven:Px=>P(x+2)

=>/\x.erven:*>Px=>P(x-2)

— P X

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

- Example : Even (see before)

— or equivalently:

assumes “x € Even”
and base: “P 0”

and step1: /\x [x € Even; P x] = P (x + 2)°
and step?2: /\x [x € Even; P x] = P (x - 2)°

shows “P x”

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

- Example 2: WellTypedness

— datatype "1" = TV: string | Typer string "t list"

— type_synonym ctxt = "(string x T) list"

— definition fun_typ :: "t = 1= 1" (infixr "={"70)
where "fun_typ 1 T' = Typer ("fun”) [T, TT"

— datatype "term" = Var string | Const string
| Abs string "term"
| App "term" "term" (infix "°" 80)

where the pragma (infixr "=+" 70) instructs Isabelle’s parser

and pretty-printer o accept "t -. t'" as alternative notation for

"fun_typ tt’ .

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

- Example 2: WellTypedness (inductively defined)

141

L142 inductive wellTyped :: "ctxt = ctxt = term = 7 = bool"

143 where

144 con : " (s, 7) € set ¥ = wellTyped X I' (Const s) (instantiate f 7)"
ws| | var :] (s, 7) € set ' — wellTyped ¥ I' (Var s) 7"

146 | appl: " wellTyped X I' f (7 =7 7")

147 = wellTyped ¥ I' a 7

148 —> wellTyped X I' (f ° a) 7' "

149 | abstr: " wellTyped ¥ ((x,7) # (filter (Ap. fst p # x) I')) body 7'
150 — wellTyped ¥ I' (Abs x body) (r =7 7')"

151

which reduces syntactically with a pragma for mixfix notation
(see chapter 8.2 in the Isar Reference Manual)

("), =/ () == (L))" [60,0,60] 60)

to

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

- Example 2: WellTypedness (inductively defined)

21/1/21

7153
154
155
156
157
158
159
160

-161

18D

where

inductive is WELLFORMED :: "ctxt = ctxt = term = 7 = bool"
("), () =/ () 2 ()" [60,0,60] 60)
con : " (s, 7) e set ¥ — (X,I' + (Const s) :: instantiate f 7)"
| var = " (s, 7) esetI' = (X, (Var s) ::)"
| appl: " (X, 'f it 7=27r7") = (,'+-a :: 7))

— (X, ' f °a:: 7)"

| abstr: ™ (2, (x,7) # (filter (Ap. fst p # x) I') F body =:: 7')

— (X, - Abs x body :: 7 =7 7")"

which gives the types inference rules not only a precise meaning,

but also derived proof principles like

B. Wolff - M1-PIA Inductions and Structured Proofs

A First Glimpse on
Case-Distinction and
Induction Rules

21/1/21 B. Wolff - M1-PIA Semantics and Constructions

Command Inductive Set

- Example 2: WellTypedness (derived consequences)

is_ WELLFORMED.induct:

X1, X2 - x3 1 x4 =
(As T Z I instantiate f. (s, T) € set = = P = " (Const s) (instantiate f 1)) =
(Astlrs. (s,T)esetlr =PI (Vars) 1) =
(ANZTfrta SMfot=21T =
Plf(t=r1t)=23lT+asTtT=P2lTatT=P2l(f°a) 1) =

(AZ x 1T body T

2,(x, T) # filter (A\p. fstp#x) ' = body :: T' =

P2 ((x, T) # filter (Ap. fstp £ x) ") body T'= P 2 I (Abs x body) (T =1 1)) =

P x1 x2 x3 x4

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

- Example 2: WellTypedness (derived consequences)

is. WELLFORMED.cases:
al,a2+al3:ad =

(As T 2 I instantiate f.
al=2=—a2= = a83=Consts = a4 =instantiate ft= (s, T) e set2 = P) =
(nsTl 2.

al=2=— a2=—=a3=Vars=—= ad=1= (s, T) esetl = P)

(ASTfTTa

al=2 = a2= D a3=f°a=— ad4=T= 2 +HfiT=>xT=23lTFHa.:T=P)=

(AZ x T T body T'.
al=2 = a2=I = a3 = Abs x body = ad4=T1 = T' = Z,(x,T)#filter(Ap. fstpzx) ' — body :: T' = P)

:P

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

- Remarks

— Induction schemes (closely related to fixpoints, recursion,
and while-loops) are the major weapon in HOL proofs that
can NOT be done by automated provers

— they can refer to (inductive) datatypes,
sets and therefore relations and are always the
means of choice if we want to express that something is
closed under a set of rules"

— Usually there are several choices of induction schemes,
their instantiation, and the target they are applied on.

— Like invariants of while-loops, it may be that some
generalization of a property can be proven inductively,
the concrete property, however, not directly.

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

- Remarks

— Obviously, induction rules and/or
case-distinction rules over non-trivial
inductive schemes are difficult to read

— .. and fo get implemented correctly

— .. it gives therefore confidence
to have them derived in Isabelle ...

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

« Parametric Inductively Defined Sets
(like transitive closure on paths):

inductive <c> [for <v>:: "<1>"]
where <thmname> : "<¢@>"

| <thmname> = <¢>

example: inductive path for rel ::"'a = 'a = bool"
where base : “path rel x x”

| step: “relxy = pathrely z— path rel x 2"

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Set

+ Inductively Defined Sets: Example path.
Isabelle/HOL:

path rel x y

— Ax. P x x;

—/Axyz. relxy=pathrelyz=—=Pyz=— Px

— P Xxy
« Text-book:
[rel a b;path rel b c; P b c]a
path rel zy |P a al, Pac

21/1/21 P xy

,b,C

Command Inductive Set

* Note: an equivalent (appending) induction
scheme with the same power:

path rel x y
—(/A\X. P x X)

—>(Axyz. [pathrelxy; Pxy;relyz] = P x
— P Xy

- The choice of the induction scheme matters
for the task ahead ...

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Data-Types and Recursive Funs

- Recall: Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

datatype ('a;..'a,) T =
<c> i V<t>" | L] <c> o tkr>”

« Recall: Recursive Function Definitions:

fun <c> ::“<t>" where
“<c> <pattern> = <t>"

| “<c> <pattern> = <t>"

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Command Inductive Datatype

+ Example: Induction Scheme from Datatype Definitions

- (Aa. P (leaf a))

— (Aatt.Pt= Pt = P (node att))
—> P tree

— Textbook:

[P t: P t’]

a,t,t’/

P(leaf a), P(nodf; att)

21/1/21 P t'r’ (A ns and Structured Proofs

Command Inductive Datatype

- Example: Recursive Function Definition

fun reflect :;: "'a tree = 'a tree"

where a: "reflect (leaf x) = leaf x"
| b : "reflect (node x tt') = node x t't”

* Example Proof: lemma “reflect(reflect t) = t:

— Proof by induction (apply style; since tree.induct is just
an ordinary (introduction) rule, this works by rule)

apply(rule_tac tree=t in tree.induct)
apply(simp add: a)

apply(simp add: b)

done

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Induction and
Cases considered
logically

21/1/21 B. Wolff - M1-PIA Semantics and Constructions

Induction vs. Case-Split

+ The commands inductive, inductive_set and
datatype generate another important schema
of rules which is an important weapon:

Case-Splits

- Most basic form:
disjE

AVB Q Q
21/1/21 () Proofs

Induction vs. Case-Split

+ For the datatype tree, this rule present
itself like this:

(Aa.y=leafa = Q)
— (Axtt.y=nodextt = Q)

= Q
[z = (leaf a)la 'z =node at t’]a,t,t,

Q Q
21/1/21 Q

Induction vs. Case-Split

- For the inductive sets, the case split rule path.cases
presents itself like this:

path rel a1 a2

— AX. al=x—=a2=x—P

— AXxyz al=x—a2=z—
relxy = pathrelyz— P

:P

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Induction and
Cases in Isabelle

21/1/21 B. Wolff - M1-PIA Semantics and Constructions

Induction and Case-Splitting Support

* induction and case-splitting were supported by

specific methods attempting fo figure out auto-
matically which rule fo use

* There are apply-style proof methods:

apply(induct_tac ,<term>")

apply(case_tac ,<term>")

which work with arbitrary open parameters
of a subgoal ...

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Induction and Case-Splitting Support

* induction and case-splitting were supported by

specific methods attempting fo figure out auto-
matically which rule to use

* There are proof methods giving support

for an own structured proof-language Isar

apply(induct ,<term>" <options ... >)

apply(cases ,<term>")

which act on parameters which are “fixed” (see later).

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Structured Proofs
in Isabelle/Isar

21/1/21 B. Wolff - M1-PIA Semantics and Constructions

Introduction to Isar
Structured Proofs

* A language for structured proofs:

Isar - Intelligible semi-automated reasoning

* http://isabelle.in.tum.de/lsar/

» supporting a declarative proof-style
(rather than a procedural one)

- oriented towards "natural deduction style”

+ presenting infermediate steps in a
machine-checked, human readable format

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Introduction to Isar
Structured Proofs

* Core: the proof environment:

proof (<method>)
[case - fix - assumes - defs- have-]
show “<goal>" <proof>

next

next
[case - fix - assumes - defs- have-]

show “<goal>" <proof>
ged

» .. @ switch from procedural to declarative
style can be done by rephrasing the goals

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Introduction to Isar
Structured Proofs

- Instead of the goal format:

/\a1 ..a.. A1 == ... Am — P

the “Isar”-format:

fix a,;:<typ> ... fix a_::<typ>
assume A, and ...and A

show P

is preferable because ...

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Introduction to Isar
Structured Proofs

- is preferable

- labelling of assumptions

- control of goal parameters

- intermediate steps “have”

- support for equational reasoning

- abbreviations

- pattern-matching

- support for cases and inductions,
which become proof-structuring
concepts

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Introduction to Isar
Structured Proofs

* The methods induct and cases produce

a list of local contexts (shown by the

diagnostic command print_cases)
with the appropriate fix'es and assume’s

« Example:

lemma "reflect(reflect t) = t”

proof(induct t) print_cases
case (leaf x) then show ?case sorry

next
case (node x1a t1 t2) then show ?case sorry

ged

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

A Structured ,Classical” Proof

- Example: (Nested) Proof by Contradiction

theorem "((A — B) — A) — A"
proof
assume "(A — B) — A"
show A
proof (rule classical)
assume " A"

have [Ng il Nameless
proof

x<Sume A selection from
with <- A> shdw B by €omtradiction local context
q S

with <(A — B) — A> show A ..
qed
qed

A Structured ,Classical” Proof

- Example: A Calculational Proof

122|Llemma (in group) group right inverse: "x * inverse x = 1"

%123 proof -

o124ffhave "x * inverse x = 1 * (x * inverse x)"

-125 by (simp only: group left one)

©126] also have "... = 1 * x * inverse x"

127 by (simp only: group assoc)

2128/ also have "... = inverse (inverse x) * inverse x * x * inverse X"
129 by (simp only: group left inverse)

2130 also have "... = inverse (inverse x) * (inverse x * Xx) * inverse Xx"
131 by (simp only: group assoc)

©132] also have "... = inverse (inverse x) * 1 * inverse x"

133 by (simp only: group left inverse)

©134| also have "... = inverse (inverse x) * (1 * inverse Xx)"

-135 by (simp only: group assoc)

©136] also have "... = inverse (inverse x) * inverse x"

137 by (simp only: group left one)

2138 also have "... = 1"

139 by (simp only: group left inverse)

140 finally show ?thesis .

-141|qed

A Structured ,Classical” Proof

+ Example: Induction, Calculation, Patterns ...
towards a comprehensive human- readable

proof presentation format

theorem sum_of_odds:

introducing
abBrevialisAvIBNg

pARIAPFhatching

local

inRORFRYAHEN

c&RRlng

iKHa eSS IBY®

prdeemtiag
main goal in
terms of
abbrevs

A Structured ,Classical® Proof

- MORE EXAMPLES ON “Proof Patterns”:

Tobias Nipkow:
"Programming and Proving in Isabelle/HOL"

(online documentation)

Conclusion

- Induction is at the heart of interactive
proving; this requires the most human ingenuity

- Isabelle offers support for inductive
and case-distinction based proofs

- the Isar-language paves the way for
adequate presentation of common proof-
structures (by induction, by case distinction,...)

- ... and by the way, Isar paved the way for
better portability and parallel proof-checking

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

